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ABSTRACT  

 

Global navigation satellite system (GNSS) provides an all-time positioning service that covers the entire world. Technology 

development impacts our daily life, positioning becomes essential. At meanwhile, urbanization induced the side-effect to position, 

especially for GNSS. High rise buildings and obstacles can block and reflect the GNSS signals. Using a 3D building model is a new 

era to aid urban positioning, namely 3D mapping aided (3DMA) GNSS. Conventional 3DMA GNSS uses position hypothesis 

candidates to estimate the receiver location. Throughout simulation at each distributed candidate, the one with the highest similarity 

to measurements tends to be the receiver location. Two obvious shortcomings of positioning hypothesis candidate are: first, candidate 

distribution must cover the truth location to provide satisfactory performance. Second, the computation load is proportional to the 

number of distributed candidates, and unwanted computation load may be caused during the estimation process. This study tries to 

overcome these limitations by replacing the positioning hypothesis candidates with nonlinear least squares to estimate the receiver 

location. Contributions of this study will be reducing the computation load requirement while maintaining the identical positioning 

performance. We selected shadow matching as the showcase to demonstrate the impacts of our proposed method on the 3DMA 

GNSS with actual GNSS data from a low-cost receiver.  

 

INTRODUCTION  

 



Rapid urbanization introduced a significant uncertainty for the GNSS positioning. That is the reason why we usually cannot achieve 

a satisfactory positioning performance. The high-rise buildings and obstacles can block and reflect the GNSS signals. This introduced 

two main phenomena, which are non-line-of-sight (NLOS) reception and multipath effect [1], and limited the positioning 

performance in the urban environment [2]. Different studies have been proposed to mitigate or eliminate these negative effects.  

 

Beneficial by the convenience of 3D model retrieval, such as combining the satellite images and airborne LiDAR, where the former 

and latter provide 2D building contour and building height, respectively [3]. A complete review of the making of large-scale 3D 

building models can be found at [4]. More 3D building model resources are available for commercial use. This explores a new era 

on using the 3D building model to improve the positioning accuracy in the urban, namely 3D mapping aided (3DMA) GNSS [5]. 3D 

building model provides two features for GNSS positioning, satellite visibility prediction and signals transmission path propagation. 

Further introduce several popular 3DMA GNSS algorithms, shadow matching [6, 7], ray-tracing GNSS [8, 9], likelihood-based 

ranging [10], and skymask 3DMA [11]. A previous study has shown that 3DMA GNSS can improve position accuracy by about 25% 

in an urban environment [10].  

 

Conventional 3DMA GNSS uses a positioning hypothesis candidate-based approach to estimate the receiver location. Based on the 

simulation of each distributed candidate, we can evaluate the similarity of prediction and measurement. Higher similarity means a 

larger likelihood for the candidate to be the receiver location. This candidate-based approach comes up with two main limitations to 

provide the best performance. First, a reliable initial position is required for the candidate distribution. To be more precise, candidates 

must cover the ground truth to ensure it is being examined to get the best performance. Otherwise, the sampling area needs to be 

enlarged for candidate distribution. And this causes the second limitation on bringing extra computation load to the receiver and 

becomes difficult for practical implementation. The evaluation process only wants to find out the candidates near the receiver 

location. Other low similarity candidates are actually not our goal during the evaluation process. 

 

Up to the discussion here, we want to estimate the position effectively while maintaining accuracy. This study is going to replace the 

positioning hypothesis candidate-based approach with a nonlinear least-squares approach for snapshot solution. We are going to use 

shadow matching as a showcase in this study. With the actual GNSS data recorded in Hong Kong, the nonlinear least-squares 

approach can provide a similar positioning accuracy than the positioning hypothesis candidate-based approach, but with higher 

estimation efficiency by reducing the sampling positions.  

 

OVERVIEW OF THE PROPOSED ALGORITHM  

 

3DMA GNSS is a hot topic for GNSS society, and more product integrates the 3DMA GNSS to provide an acceptable positioning 

in the urban environment. The existing algorithm uses the positioning hypothesis candidate-based approach to estimate the position 

solution. The procedure of the positioning hypothesis approach is first distributing the positioning candidates around the initial guess 

position. We estimate the similarity of the features between measured and predicted on each candidate's location — the higher 

similarity, the higher possibility of the receiver location. The matching feature to be used depends on the 3DMA GNSS algorithms. 

Using shadow matching as an example, it uses satellite geometry and visibility to estimate the position. The actual GNSS signal 

reception matching with the visibility prediction by the 3D model becomes the key of shadow matching to resolve the receiver 

location.  

 

To summarize 3DMA GNSS in one sentence, 3DMA GNSS is to find a location that best matches the 3D building model prediction 

and receiver measurements. Thus, we can mathematically express this statement, 

 𝐱 = argmin
𝐱

‖𝐲 − 𝐲̂‖ = argmin
𝐱

‖𝐲 − 𝐅(𝐱)‖ (1) 

where 𝐱 = [𝐸, 𝑁] is the state, also known as the east 𝐸 and north 𝑁 position in our problem. 𝐲 is the actual observation from the 

receiver. 𝐲̂ = 𝐆(𝐱) is the estimated value using the 3D building model. Both are column vectors with the length of the number of the 

available satellite. And we can foresee that the 3DMA GNSS is an optimization problem, as long as we can express the physical 

model of different algorithms.  

 

This study uses shadow matching as the demonstration of adopting the nonlinear least squares to resolve the solution. We revisit the 

state-of-art shadow matching proposed in [10], the visibility consistency, 𝑃𝑗
𝑖 , for 𝑖-th satellite at 𝑗-th candidate is given by,  

 𝑃𝑗
𝑖 = 𝑃𝐶 𝑁0⁄

𝑖 𝑃𝐵𝐵,𝑗
𝑖 + (1 − 𝑃𝐶 𝑁0⁄

𝑖 )(1 − 𝑃𝐵𝐵,𝑗
𝑖 ) (2) 



where 𝑃𝐶 𝑁0⁄
𝑖  is the probability that the received signal is direct LOS one. It is determined from the receiver’s 𝐶 𝑁0⁄  measurements. 

𝑃𝐵𝐵,𝑗
𝑖  is the probability that the satellite is predicted to be direct LOS. And the prediction is based on the building boundaries 

precomputed from the 3D building model.  

 

In which we wish to find a position that can maximize the objective function, 𝑃𝑗
𝑖  in (2). As a result, expressing the function 𝑃𝑗

𝑖  with 

position state 𝐱 is important. After combining with (1), that yields to, 

 𝐱 = argmin
𝐱

‖𝐆(𝐱)‖2 = argmin
𝐱

‖− log(𝐏𝐱)‖
2 (3) 

where 𝐏𝐱 = [𝑃𝐱
1…𝑃𝐱

𝑖]𝑻 is a column vector with the number of available satellites related to the state, or known as positioning in this 

situation. Taking − log(∙) in (3) is to minimize our objective function. Look into function 𝐏𝐱, the only term that related to the state 𝐱 

is the model visibility prediction, 𝑃𝐵𝐵
𝑖 . We can express the probability of a satellite being LOS at a position, 

 𝑃𝐵𝐵
𝑖 (𝐱) = tanh (α × (𝐸𝐿𝑖 − 𝐵𝐵𝑗 (ℎ𝐱

𝐴𝑍𝑖 , 𝑑𝐱
𝐴𝑍𝑖|𝐱))) × τ +

1

2
  (4) 

 𝐵𝐵𝑗 (ℎ𝐱
𝐴𝑍𝑖 , 𝑑𝐱

𝐴𝑍𝑖|𝐱) = tan−1
ℎ𝐱
𝐴𝑍𝑖

√(𝐸−𝑑𝐱
𝐴𝑍𝑖 sin(𝐴𝑍𝑖))

2
+(𝑁−𝑑𝐱

𝐴𝑍𝑖 cos(𝐴𝑍𝑖))
2
 (5) 

where 𝐴𝑍𝑖 , 𝐸𝐿𝑖 represent the azimuth and elevation angle of the the 𝑖-th satellite, respectively. ℎ𝐱
𝐴𝑍𝑖 , 𝑑𝐱

𝐴𝑍𝑖  are the highest building 

height and horizontal distance at 𝐴𝑍𝑖 with respect to position 𝐱, and these are obtained from the pre-generated skymask. And function 

𝐵𝐵𝑗 (ℎ𝐱
𝐴𝑍𝑖 , 𝑑𝐱

𝐴𝑍𝑖|𝐱) is actually calculating the skymask elevation angle at 𝐴𝑍𝑖 , the variables 𝐸,𝑁 are the state 𝐱 that we wish to 

optimize. The denominator here decomposes the horizontal distance to the building, adds the change of state, then reforms the total 

distance. α is the tuning factor for the classification to make the building boundary classification blunt. τ =
1

2
(τmax + τmin) is the 

scaling factor. It scales the output of 𝑃𝐵𝐵
𝑖 (𝐱) falls between the range [τmin, τmax].  

 

After we obtain the model that expresses by the state 𝐱, we can optimize it through the nonlinear least-squares approach. There are 

three most popular nonlinear least-squares approaches, gradient descent, Gauss-Newton, and Levenberg-Marquardt method. Where 

all three methods optimize our objective function iteratively. And once the state is updated, the position-dependent parameter, such 

as ℎ𝐱
𝐴𝑍𝑖  and 𝑑𝐱

𝐴𝑍𝑖  are also updated accordingly to provide more accurate parameters during optimization. The state optimization and 

update at 𝑘-th epoch can be done by the Gauss-Newton method [12],  

 𝐱𝑘+1 = 𝐱𝑘 − [𝐉(𝐱)𝐓𝐉(𝐱)]−𝟏𝐉(𝐱)𝐓𝐆(𝐱) (6) 

where 𝐉(𝐱) is the jacobian matrix and it is calculated by 𝛁𝐆(𝐱).  
 

In this study, we only optimize the position solution with the Gauss-Newton method. As Gauss-Newton is the only method that uses 

the residual of the objective function to determine the converging speed. Thus, there is not necessary to consider the strategy to tune 

the parameters through the optimization process.  

 

This study proposed a new approach to model the prediction function for shadow matching. Therefore, it is necessary to compare the 

objective function output on the candidate-based shadow matching and the proposed method by plotting their heatmap. Figure 1 

shows the heatmap for the two approaches.  

 



Figure 1: Heatmap on (a) candidate-based shadow matching; and (b) proposed method, modelling the prediction function with 

position state 𝐱 in (2)-(5). Noted that variable ℎ𝐱
𝐴𝑍𝑖 and 𝑑𝐱

𝐴𝑍𝑖  is given by on each position 𝐱. The green star is the ground truth.  

 

Noted that the candidate-based shadow matching in Figure 1(a) targets maximizing the function, so the red part is what we want in 

this problem. While the proposed modelling in Figure 1(b) tries to minimize the function. Therefore, the blue part is the objective in 

this case. As a result, two heatmaps are inversely proportional to each other. And we can see that the same trending can be observed 

for both heatmaps, which means that the same performance should be obtained during the evaluation for the position.  

 

At meanwhile, the prediction function in (4) and (5), there are two position-dependent variables, ℎ𝐱
𝐴𝑍𝑖  and 𝑑𝐱

𝐴𝑍𝑖 . These two variables 

are important during optimization as they describe the surrounded building height and horizontal distance. They should change 

whenever the estimated position state 𝐱 changed. And we also compare the heatmap for two cases, when the variables are given by 

initial location that far and close to ground truth, respectively, as shown in Figure 2.  

 

Figure 2: Heatmap on proposed modelling with position state 𝐱 dependent variable ℎ𝐱
𝐴𝑍𝑖  and 𝑑𝐱

𝐴𝑍𝑖  based on the initial position 

(purple point), where initial at location (a) far from ground truth; and (b) close to ground truth. The green star is the ground truth. 

 

From Figure 2(a) heatmap, we can observe that when the initial location is far from the ground truth, which means the ℎ𝐱
𝐴𝑍𝑖  and 𝑑𝐱

𝐴𝑍𝑖  

are probably different from the actual location. As a result, the minimized location is wrong in this case. While the initial location in 

Figure 2(b) is close to the ground truth, so the variables should be the same as the ground truth. And we can observe that the minimized 

location is near the ground truth. This means that the solution should be able to converge to the correct location.  

 

EXPERIMENTS RESULTS AND ANALYSIS 

 

This study is going to demonstrate the proposed approach with actual recorded data in Hong Kong. The result is divided into two 

main parts, first is the positioning accuracy, and another part is the required computation load for two methods. The positioning result 

in the map plot is shown in Figure 3, and the statistic is presented in Table 1, where position error is categorized in root mean squared 

(RMS), mean, standard deviation (STD), maximum (MAX), minimum (MIN) positioning error. 

 



 
Figure 3: Positioning result of the smartphone data in 2D map view. 

 

Table 1: Positioning error statistics of the smartphone data.  

 Candidate-based shadow matching 
Nonlinear least squares approach  

(proposed method) 

RMS 8.26 11.11 

Mean 6.78 9.74 

STD 4.73 5.33 

MAX 42.90 46.39 

MIN 0.31 1.32 

 

The result shows that the proposed method can provide similar performance in terms of positioning accuracy. The difference between 

the candidate-based and nonlinear least squares approach is the number of positions or candidates that must be sampled. Nonlinear 

least-squares uses mathematics calculation to reduce the number of sample candidates. As a result, the nonlinear least-squares 

approach should be able to optimize the estimation process. As a result, we are going to estimate the computation load of two methods. 

The main difference between the two approaches is the number of trials required to sample, so we mainly compare this. The 

computation load for the two methods is shown in Figure 4. The y axis on the left-hand side in red represents the number of candidates 

for the candidate-based approach. The right-hand side in blue represents the number of the estimated position for the proposed 

method. Noted that the number of satellites is identical for both methods, so the figure only shows the number of candidates or 

sampled positions.  

 



 
Figure 4: Positioning result on (a) number of sampled positions for candidate-based (red) and nonlinear least-squares (blue); (b) 2D 

error.  

 

The sampling area is set to a 40m radius with candidates separation of 2m for a candidate-based approach. The require sampling 

candidate is more than 1500 through the whole experiment. After replacing the position estimation with Gauss-Newton, the number 

of estimations was reduced to less than 12 throughout the experiment. A larger positioning error can be found in this experiment 

result. The reason could be the proposed prediction function cannot perfectly model the actual environment. Although the location-

dependent variables, ℎ𝐱
𝐴𝑍𝑖  and 𝑑𝐱

𝐴𝑍𝑖 , are updating at each iteration, the surrounding building feature is still considering a single 

location but not the whole environment. As a result, the prediction function should also consider to update ℎ𝐱
𝐴𝑍𝑖  and 𝑑𝐱

𝐴𝑍𝑖  when 

estimating the visibility. In other words, variables ℎ𝐱
𝐴𝑍𝑖  and 𝑑𝐱

𝐴𝑍𝑖  should be a 𝐸  and 𝑁  related function to better estimating the 

building information.  

 

CONCLUSIONS AND FUTURE WORK 

 

This study presented a novel way to improve the efficiency of position estimation for 3DMA GNSS. A snapshot-based nonlinear 

least squares approach is proposed to replace the candidate-based approach. Two main contributions were made in this study, first, 

expressed the 3DMA GNSS in a mathematical way as the objective function. And the second contribution is to optimize the objective 

function as the least-squares problem. This can reduce the number of sampling positions to increase efficiency. The actual recorded 

data have shown that the proposed method can provide a similar positioning accuracy but a much lower sampling position number 

through the estimation process. This study only used shadow matching as the demonstration, the potential of the proposed method 

can still be extended in several domains. 

 

However, the proposed modelling is imperfect for practical usage. Where the prediction function includes the location-dependent 

variables, this limits the performance of the algorithm. When the initial location consists of a large error and wrong variables are 

given, the solution may go in the wrong direction. Furthermore, the algorithm cannot determine the correct converging direction 

when there is not enough feature for the estimation (e.g., worst satellite distribution).  

 

Implementation wise, the result shown in this study is only a prototype. There are different opensource optimization libraries, such 

as Ceres Solver, GTSAM, and GraphGNSSLib, that can further optimize the performance of the proposed method. Where we can 

easily tune the parameters through the optimization process, such as the damping factor in the Levenberg-Marquardt method. 



Furthermore, this study only employs the Gauss-Newton algorithm as the showcase. A complete study is required on adopting 

different nonlinear least-squares, such as gradient descent and the Levenberg-Marquardt method. This lets us better understand the 

adaptation of each algorithm to 3DMA GNSS.  

 

In terms of the 3DMA GNSS generalization, other ranging-based 3DMA GNSS algorithms will model as the mathematical problem 

and estimate the position as a batch. Besides the benefits of increasing the efficiency, solving 3DMA GNSS as a least-squares problem 

can easily plug and play into different graph problems that are great potential to integrate with a bunch of algorithms. Once we can 

express the 3DMA GNSS as an objective function with the position state, we can consider the function as a node inside the graph 

problem.  

 

In the time domain, we can correlate the snapshot least-squares problem with time correlation, such as incorporating Doppler 

measurements. As a result, we can solve the graph problem as a batch to further optimize the performance of 3DMA GNSS, which 

is the concept of factor graph optimization (FGO).  
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